Trading Spaces: Adaptive Subspace Time Integration for Contacting Elastodynamics
DescriptionWe construct a subspace simulator that adaptively balances solution improvement against system size. The core components of our simulator are an adaptive subspace oracle, model, and parallel time-step solver algorithm. Our in-time-step adaptivity oracle continually assesses subspace solution quality and candidate update proposals while accounting for temporal variations in deformation and spatial variations in material. In turn our adaptivity model is subspace agnostic. It allows application across subspace representations and expresses unrestricted deformations independent of subspace choice. We couple our oracle and model with a custom-constructed parallel time-step solver for our enriched systems that exposes a pair of user tolerances which provide controllable simulation quality. As tolerances are tightened our model converges to full-space solutions (with expected cost increases). On the other hand, as tolerances are relaxed we obtain output-bound simulation costs. We demonstrate the efficacy of our approach across a wide range of challenging nonlinear materials models, material stiffnesses, heterogeneities, dynamic behaviors, and frictionally contacting conditions, obtaining scalable and efficient simulations of complex elastodynamic scenarios.
Event Type
Technical Papers
TimeTuesday, 3 December 20249:00am - 12:00pm JST
LocationHall C, C Block, Level 4
Registration Categories
Language Formats