Approximation by Meshes with Spherical Faces
DescriptionMeshes with spherical faces and circular edges are an attractive alternative to polyhedral meshes for applications in architecture and design. Approximation of a given surface by such a mesh needs to consider the visual appearance, approximation quality, the position and orientation of circular intersections of neighboring faces and the existence of a torsion free support structure that is formed by the planes of circular edges. The latter requirement implies that the mesh simultaneously defines a second mesh whose faces lie on the same spheres as the faces of the first mesh. It is a discretization of the two envelopes of a sphere congruence, i.e., a two-parameter family of spheres. We relate such sphere congruences to torsal parameterizations of associated line congruences. Turning practical requirements into properties of such a line congruence, we optimize line and sphere congruence as a basis for computing a mesh with spherical triangular or quadrilateral faces that approximates a given reference surface.
Event Type
Technical Papers
TimeTuesday, 3 December 20249:00am - 12:00pm JST
LocationHall C, C Block, Level 4
Registration Categories
Language Formats