BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023303Z LOCATION:Lobby Gallery (1) & (2)\, G Block\, Level B1 DTSTART;TZID=Asia/Tokyo:20241203T090000 DTEND;TZID=Asia/Tokyo:20241203T180000 UID:siggraphasia_SIGGRAPH Asia 2024_sess195_pos_145@linklings.com SUMMARY:Towards Accelerating Physics Informed Graph Neural Network for Flu id Simulation DESCRIPTION:Poster\n\nYidi Wang (NVIDIA, Singapore Institute of Technology ); Frank Guan, Malcolm Yoke Hean Low, and Daniel Wang (Singapore Institute of Technology); and Aik Beng Ng and Simon See (NVIDIA)\n\nWe introduce a pioneering Multi-GNN Processor Physics-Informed Graph Neural Network (PIGN N) approach which reduced training time of PIGNN to a quarter while mainta ining the error rate.\n\nRegistration Category: Enhanced Access, Exhibit & Experience Access, Experience Hall Exhibitor, Full Access, Full Access Su pporter, Trade Exhibitor URL:https://asia.siggraph.org/2024/program/?id=pos_145&sess=sess195 END:VEVENT END:VCALENDAR