BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023313Z LOCATION:Hall B5 (2)\, B Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241206T153100 DTEND;TZID=Asia/Tokyo:20241206T154300 UID:siggraphasia_SIGGRAPH Asia 2024_sess149_papers_936@linklings.com SUMMARY:Procedural Material Generation with Reinforcement Learning DESCRIPTION:Technical Papers\n\nBeichen Li (MIT CSAIL, Adobe Research); Yi wei Hu, Paul Guerrero, and Milos Hasan (Adobe Research); Liang Shi (MIT CS AIL); Valentin Deschaintre (Adobe Research); and Wojciech Matusik (MIT CSA IL)\n\nModern 3D content creation heavily relies on procedural assets. In particular, procedural materials are ubiquitous in the industry, but their manipulation remains challenging. Previous work conditionally generates p rocedural graphs that match a given input image. However, the parameter ge neration step limits how accurately the generated graph matches the input image, due to a reliance on supervision with scarcely available procedural data. We propose to improve parameter prediction accuracy for image-condi tioned procedural material generation by leveraging reinforcement learning (RL) and present the first RL approach for procedural materials. RL circu mvents the limited availability of procedural data, the domain gap between real and synthetic materials, and the need for end-to-end differentiable loss functions. Given a target image, we retrieve a procedural material an d use an RL-trained transformer model to predict a set of parameters that reconstruct the target image as closely as possible. We show that using RL significantly improves parameter prediction to match a given target image compared to supervised methods on both synthetic and real target images.\ n\nRegistration Category: Full Access, Full Access Supporter\n\nLanguage F ormat: English Language\n\nSession Chair: Valentin Deschaintre (Adobe Rese arch) URL:https://asia.siggraph.org/2024/program/?id=papers_936&sess=sess149 END:VEVENT END:VCALENDAR