BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023313Z LOCATION:Hall B5 (1)\, B Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241206T113100 DTEND;TZID=Asia/Tokyo:20241206T114300 UID:siggraphasia_SIGGRAPH Asia 2024_sess142_papers_700@linklings.com SUMMARY:Style-NeRF2NeRF: 3D Style Transfer from Style-Aligned Multi-View I mages DESCRIPTION:Technical Papers\n\nHaruo Fujiwara (University of Tokyo) and Y usuke Mukuta and Tatsuya Harada (University of Tokyo, RIKEN AIP)\n\nWe pro pose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed f rom a set of multi-view images, we perform 3D style transfer by refining t he source NeRF model using stylized images generated by a style-aligned im age-to-image diffusion model.\nGiven a target style prompt, we first gener ate perceptually similar multi-view images by leveraging a depth-condition ed diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer proces s with the sliced Wasserstein loss based on the feature maps extracted fro m a pre-trained CNN model.\nOur pipeline consists of decoupled steps, allo wing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage.\nWe demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality.\n\nRegistration Category: Full Access, Full Access Su pporter\n\nLanguage Format: English Language\n\nSession Chair: Maria Larss on (University of Tokyo) URL:https://asia.siggraph.org/2024/program/?id=papers_700&sess=sess142 END:VEVENT END:VCALENDAR