BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023312Z LOCATION:Hall B5 (2)\, B Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241204T114300 DTEND;TZID=Asia/Tokyo:20241204T115400 UID:siggraphasia_SIGGRAPH Asia 2024_sess113_tog_111@linklings.com SUMMARY:ReN Human: Learning Relightable Neural Implicit Surfaces for Anima table Human Rendering DESCRIPTION:Technical Papers\n\nRengan Xie (State Key Laboratory of CAD&CG , Zhejiang University); Kai Huang (Institute of Computing Technology, Chin ese Academy of Sciences; Zhejiang Lab); In-Young Cho (KRAFTON); Sen Yang ( Zhejiang Lab); Wei Chen, Hujun Bao, and Wenting Zheng (State Key Laborator y of CAD&CG, Zhejiang University); Rong Li (Zhejiang University); and Yuch i Huo (State Key Laboratory of CAD&CG, Zhejiang University; Zhejiang Lab)\ n\nThis work proposes ReN Human, a framework that utilizes sparse or even monocular input videos to reconstruct a 3D human model represented as a de formable implicit neural surface. It decomposes geometry and material, res ulting in a relightable, animatable human model that can be rendered with novel views, poses, and lighting.\n\nRegistration Category: Full Access, F ull Access Supporter\n\nLanguage Format: English Language\n\nSession Chair : Forrester Cole (Google) URL:https://asia.siggraph.org/2024/program/?id=tog_111&sess=sess113 END:VEVENT END:VCALENDAR