BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023303Z LOCATION:G510\, G Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241205T132500 DTEND;TZID=Asia/Tokyo:20241205T133700 UID:siggraphasia_SIGGRAPH Asia 2024_sess288_tcom_186@linklings.com SUMMARY:AnimateLCM: Computation-Efficient Personalized Style Video Generat ion without Personalized Video Data DESCRIPTION:Technical Communications\n\nFu-Yun Wang (Chinese University of Hong Kong); Zhaoyang Huang (Avolution AI); Weikang Bian, Xiaoyu Shi, and Keqiang Sun (Chinese University of Hong Kong); Guanglu Song (SenseTime); Y u Liu (Shanghai Artificial Intelligence Laboratory); and Hongsheng Li (Chi nese University of Hong Kong)\n\nComputation-efficient personalized style video generation without personalized video data, reducing generation time of similarly sized video diffusion models from 25 seconds to around 1 sec ond while maintaining comparable performance.\n\nRegistration Category: Fu ll Access, Full Access Supporter\n\nLanguage Format: English Language\n\nS ession Chair: Krishna Mullia (Adobe Research) URL:https://asia.siggraph.org/2024/program/?id=tcom_186&sess=sess288 END:VEVENT END:VCALENDAR