BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023312Z LOCATION:Hall B5 (1)\, B Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241205T093400 DTEND;TZID=Asia/Tokyo:20241205T094600 UID:siggraphasia_SIGGRAPH Asia 2024_sess124_papers_852@linklings.com SUMMARY:Deformation Recovery: Localized Learning for Detail-Preserving Def ormations DESCRIPTION:Technical Papers\n\nRamana Sundararaman (Centre National de la Recherche Scientifique - Laboratoire d'informatique de l'École Polytechni que (LIX)); Nicolas Donati (Ansys); Simone Melzi (University of Milano-Bic occa); Etienne Corman (Université de Lorraine, CNRS); and Maks Ovsjanikov (Centre National de la Recherche Scientifique - Laboratoire d'informatique de l'École Polytechnique (LIX))\n\nWe introduce a novel data-driven appro ach aimed at designing high-quality shape deformations based on a coarse l ocalized input signal. Unlike previous data-driven methods that require a global shape encoding, we observe that detail-preserving deformations can be estimated reliably without any global context in certain scenarios. Bui lding on this intuition, we leverage Jacobians defined in a one-ring neigh borhood as a coarse representation of the deformation. Using this as the i nput to our neural network, we apply a series of MLPs combined with featur e smoothing to learn the Jacobian corresponding to the detail-preserving d eformation, from which the embedding is recovered by the standard Poisson solve. Crucially, by removing the dependence on a global encoding, every p oint becomes a training example, making the supervision particularly light weight. Moreover, when trained on a class of shapes, our approach demonstr ates remarkable generalization across different object categories. Equippe d with this novel network, we explore three main tasks: refining an approx imate shape correspondence, unsupervised deformation and mapping, and shap e editing.\n\nRegistration Category: Full Access, Full Access Supporter\n\ nLanguage Format: English Language\n\nSession Chair: Yotam Gingold (George Mason University) URL:https://asia.siggraph.org/2024/program/?id=papers_852&sess=sess124 END:VEVENT END:VCALENDAR