BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023313Z LOCATION:Hall B5 (2)\, B Block\, Level 5 DTSTART;TZID=Asia/Tokyo:20241206T090000 DTEND;TZID=Asia/Tokyo:20241206T091100 UID:siggraphasia_SIGGRAPH Asia 2024_sess140_papers_422@linklings.com SUMMARY:Differentiating Variance for Variance-Aware Inverse Rendering DESCRIPTION:Technical Papers\n\nKai Yan (University of California Irvine, Wētā FX); Vincent Pegoraro, Marc Droske, and Jiří Vorba (Wētā FX); and Shu ang Zhao (University of California Irvine)\n\nMonte Carlo methods have bee n widely adopted in physics-based rendering.\n A key property of a Mont e Carlo estimator is its variance, which dictates the convergence rate of the estimator.\n In this paper, we devise a mathematical formulation fo r derivatives of rendering variance with respect to not only scene paramet ers (e.g., surface roughness) but also sampling probabilities.\n Based on this formulation, we introduce unbiased Monte Carlo estimators for thos e derivatives.\n Our theory and algorithm enable variance-aware inverse rendering which alters a virtual scene and/or an estimator in an optimal way to offer a good balance between bias and variance.\n We evaluate ou r technique using several synthetic examples.\n\nRegistration Category: Fu ll Access, Full Access Supporter\n\nLanguage Format: English Language\n\nS ession Chair: Seungyong Lee (POSTECH) URL:https://asia.siggraph.org/2024/program/?id=papers_422&sess=sess140 END:VEVENT END:VCALENDAR