BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Asia/Tokyo X-LIC-LOCATION:Asia/Tokyo BEGIN:STANDARD TZOFFSETFROM:+0900 TZOFFSETTO:+0900 TZNAME:JST DTSTART:18871231T000000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20250110T023312Z LOCATION:Hall B7 (1)\, B Block\, Level 7 DTSTART;TZID=Asia/Tokyo:20241204T134600 DTEND;TZID=Asia/Tokyo:20241204T135800 UID:siggraphasia_SIGGRAPH Asia 2024_sess117_papers_114@linklings.com SUMMARY:MotionFix: Text-Driven 3D Human Motion Editing DESCRIPTION:Technical Papers\n\nNikos Athanasiou (Max Planck Institute for Intelligent Systems); Alpár Cseke (Max Planck Institute for Intelligent S ystems, Meshcapade); Markos Diomataris and Michael J. Black (Max Planck In stitute for Intelligent Systems); and Gül Varol (LIGM, ́Ecole des Ponts, Univ Gustave Eiffel, CNRS)\n\nThe focus of this paper is 3D motion editing . Given a 3D human motion\nand a textual description of the desired modifi cation, our goal is to generate\nan edited motion as described by the text . The challenges include the lack\nof training data and the design of a mo del that faithfully edits the source\nmotion. In this paper, we address bo th these challenges. We build a methodology\n to semi-automatically collec t a dataset of triplets in the form of (i) a\nsource motion, (ii) a target motion, and (iii) an edit text, and create the new\nMotionFix dataset. Ha ving access to such data allows us to train a conditional\ndiffusion model , TMED, that takes both the source motion and the edit text\nas input. We further build various baselines trained only on text-motion\npairs dataset s, and show superior performance of our model trained on\ntriplets. We int roduce new retrieval-based metrics for motion editing, and\nestablish a ne w benchmark on the evaluation set of MotionFix. Our results\nare encouragi ng, paving the way for further research on fine-grained motion\ngeneration . Code and models will be made publicly available.\n\nRegistration Categor y: Full Access, Full Access Supporter\n\nLanguage Format: English Language \n\nSession Chair: Jungdam Won (Seoul National University) URL:https://asia.siggraph.org/2024/program/?id=papers_114&sess=sess117 END:VEVENT END:VCALENDAR