BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Australia/Melbourne X-LIC-LOCATION:Australia/Melbourne BEGIN:DAYLIGHT TZOFFSETFROM:+1000 TZOFFSETTO:+1100 TZNAME:AEDT DTSTART:19721003T020000 RRULE:FREQ=YEARLY;BYMONTH=4;BYDAY=1SU END:DAYLIGHT BEGIN:STANDARD DTSTART:19721003T020000 TZOFFSETFROM:+1100 TZOFFSETTO:+1000 TZNAME:AEST RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=1SU END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20240214T070248Z LOCATION:Meeting Room C4.8\, Level 4 (Convention Centre) DTSTART;TZID=Australia/Melbourne:20231214T143500 DTEND;TZID=Australia/Melbourne:20231214T144500 UID:siggraphasia_SIGGRAPH Asia 2023_sess151_papers_637@linklings.com SUMMARY:Neural Stress Fields for Reduced-order Elastoplasticity and Fractu re DESCRIPTION:Technical Papers\n\nZeshun Zong and Xuan Li (University of Cal ifornia Los Angeles); Minchen Li (University of California Los Angeles, Ca rnegie Mellon University); Maurizio M. Chiaramonte (Meta Reality Labs Rese arch); Wojciech Matusik (MIT CSAIL); Eitan Grinspun (University of Toronto ); Kevin Carlberg (Meta Reality Labs Research); Chenfanfu Jiang (Universit y of California Los Angeles); and Peter Yichen Chen (MIT CSAIL)\n\nThe mat erial point method (MPM) is a versatile simulation framework for large-def ormation elastoplasticity and fracture. However, MPM's long runtime and la rge memory consumptions render it unsuitable for applications constrained by computation time and memory usage, e.g., virtual reality. To overcome t hese barriers, we propose a reduced-order MPM framework. Our key innovatio n is training a low-dimensional manifold for the Kirchhoff stress field vi a an implicit neural representation. This low-dimensional neural stress fi eld (NSF) enables efficient evaluations of stress values and, correspondin gly, internal forces at arbitrary spatial locations. In addition, we also train neural deformation and affine fields to build low-dimensional manifo lds for the deformation and affine momentum fields. These neural stress, d eformation, and affine fields share the same low-dimensional latent space, which uniquely embeds the high-dimensional MPM simulation state. After tr aining, we run new simulations by evolving in this single latent space, wh ich drastically reduces the computation time and memory consumption. Our g eneral continuum-mechanics-based reduced-order framework is applicable to any phenomena governed by the elastodynamics equation. To showcase the ver satility of our framework, we simulate a wide range of material behaviors, including elastica, sand, metal, non-Newtonian fluids, fracture, contact, and collision. We demonstrate dimension reduction by up to 100,000X and t ime savings by up to 10X.\n\nRegistration Category: Full Access\n\nSession Chair: Tao Du (Tsinghua University, Shanghai Qi Zhi Institute) URL:https://asia.siggraph.org/2023/full-program?id=papers_637&sess=sess151 END:VEVENT END:VCALENDAR