BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Australia/Melbourne X-LIC-LOCATION:Australia/Melbourne BEGIN:DAYLIGHT TZOFFSETFROM:+1000 TZOFFSETTO:+1100 TZNAME:AEDT DTSTART:19721003T020000 RRULE:FREQ=YEARLY;BYMONTH=4;BYDAY=1SU END:DAYLIGHT BEGIN:STANDARD DTSTART:19721003T020000 TZOFFSETFROM:+1100 TZOFFSETTO:+1000 TZNAME:AEST RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=1SU END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20240214T070249Z LOCATION:Meeting Room C4.8\, Level 4 (Convention Centre) DTSTART;TZID=Australia/Melbourne:20231215T103000 DTEND;TZID=Australia/Melbourne:20231215T104500 UID:siggraphasia_SIGGRAPH Asia 2023_sess154_papers_485@linklings.com SUMMARY:ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Larg e-Scale Scene Rendering DESCRIPTION:Technical Papers\n\nXiuchao Wu (State Key Laboratory of CAD & CG, Zhejiang University); Jiamin Xu (Hangzhou Dianzi Univeristy); Xin Zhan g (State Key Laboratory of CAD&CG, Zhejiang Univerisity); Hujun Bao (State Key Laboratory of CAD & CG, Zhejiang University); Qixing Huang (Universit y of Texas at Austin); Yujun Shen (Ant Group); James Tompkin (Brown Univer sity); and Weiwei Xu (State Key Laboratory of CAD&CG, Zhejiang Univerisity )\n\nHigh-quality large-scale scene rendering requires a scalable represen tation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-a djusting neural radiance fields. The proposed method scales with a divide- and-conquer strategy. We partition scenes into tiles, each with a multi-re solution hash feature grid and shallow chained diffuse and specular multi- layer perceptrons (MLPs). Tiles unify foreground and background via a spat ial contraction function that allows both distant objects in outdoor scene s and planar reflections as virtual images outside the tile. Decomposing a ppearance with the specular MLP allows a specular-aware warping loss to pr ovide a second optimization path for camera poses. We apply the alternatin g direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering m ethod quality by 5%--10% in PSNR, maintaining sharp distant objects and vi ew-dependent reflections across six indoor and outdoor scenes.\n\nRegistra tion Category: Full Access\n\nSession Chair: Yuchi Huo (Zhejiang Universit y, Korea Advanced Institute of Science and Technology) URL:https://asia.siggraph.org/2023/full-program?id=papers_485&sess=sess154 END:VEVENT END:VCALENDAR