BEGIN:VCALENDAR VERSION:2.0 PRODID:Linklings LLC BEGIN:VTIMEZONE TZID:Australia/Melbourne X-LIC-LOCATION:Australia/Melbourne BEGIN:DAYLIGHT TZOFFSETFROM:+1000 TZOFFSETTO:+1100 TZNAME:AEDT DTSTART:19721003T020000 RRULE:FREQ=YEARLY;BYMONTH=4;BYDAY=1SU END:DAYLIGHT BEGIN:STANDARD DTSTART:19721003T020000 TZOFFSETFROM:+1100 TZOFFSETTO:+1000 TZNAME:AEST RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=1SU END:STANDARD END:VTIMEZONE BEGIN:VEVENT DTSTAMP:20240214T070247Z LOCATION:Meeting Room C4.11\, Level 4 (Convention Centre) DTSTART;TZID=Australia/Melbourne:20231214T111000 DTEND;TZID=Australia/Melbourne:20231214T112500 UID:siggraphasia_SIGGRAPH Asia 2023_sess129_papers_431@linklings.com SUMMARY:Diffusion Posterior Illumination for Ambiguity-aware Inverse Rende ring DESCRIPTION:Technical Papers\n\nLinjie Lyu (Max-Planck-Institut für Inform atik), Ayush Tewari (MIT CSAIL), Marc Habermann (Max-Planck-Institut für I nformatik), Shunsuke Saito and Michael Zollhöfer (Reality Labs Research), and Thomas Leimkühler and Christian Theobalt (Max-Planck-Institut für Info rmatik)\n\nInverse rendering, the process of inferring scene properties fr om images, is a challenging inverse problem. The task is ill-posed, as man y different scene configurations can give rise to the same image. Most exi sting solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions, but they do not consider the inherent ambig uities and the multi-modal distribution of possible decompositions. In thi s work, we propose a novel scheme that integrates a denoising diffusion pr obabilistic model pre-trained on natural illumination maps into an optimiz ation framework involving a differentiable path tracer. The proposed metho d allows sampling from combinations of illumination and spatially-varying surface materials that are, both, natural and explain the image observatio ns. We further conduct an extensive comparative study of different priors on illumination used in previous work on inverse rendering. Our method exc els in recovering materials and producing highly realistic and diverse env ironment map samples that faithfully explain the illumination of the input images.\n\nRegistration Category: Full Access\n\nSession Chair: Marc Stam minger (Friedrich-Alexander-Universität Erlangen-Nürnberg) URL:https://asia.siggraph.org/2023/full-program?id=papers_431&sess=sess129 END:VEVENT END:VCALENDAR